

Mitigating methane emissions through breeding - where are we in Denmark?

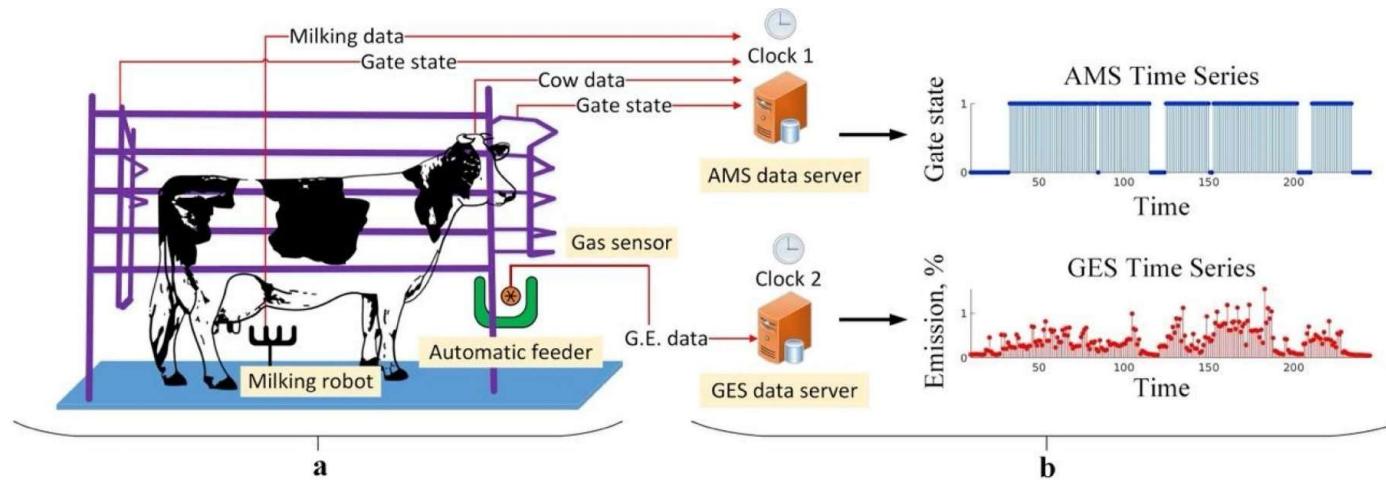
H. Schneider¹, R.B. Stephansen², T.M. Villumsen², J. L. Voergaard¹

¹*SEGES Innovation, Denmark*

²*Center for Quantitative Genetics and Genomics, Aarhus University, Denmark*

NAV workshop
20th of january 2026

Introduction


Many projects and activities, related to feeding, manure management to mitigate methane emissions, and many more

Focus of this presentation
projects and activities related to genetics

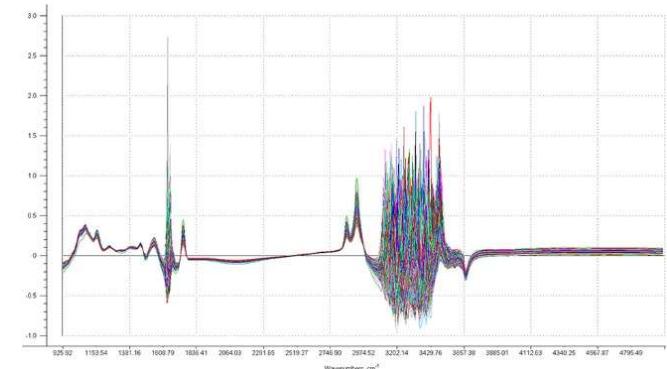
Main results so far

- Developed programs and pipelines to:
 - Correct for background gas concentrations
 - Generate corrected phenotypes
 - Merge sniffer and AMS data

ONIMIT

- Developed a model for genetic evaluation of methane concentration
- Data collection from 38 sniffers, so far installed in 40 farms (August 2025)

Basis for genetic evaluation



	HOL	JER	RDC	XXX	Total
Total number of cows	6,755	5,076	1,979	941	14,751
Total number of records	958,310	540,421	200,541	81,562	1,780,834

- Plan for 2026: 65 sniffers
 - 10 from Danish Holstein + 10 from GMG Jersey + 5 from Jersey Support + 2 from GMG RDC

Main purpose

→ Development of a model to define a methane proxy phenotype on the basis of mid-infrared spectrum (MIR) data

→ Enables a methane phenotype for all dairy cows included in the Danish yield control

Globale Methane Genetics (GMG)

Objective

Accelerating genetic progress to reduce methane in ruminants

Denmark involved in activities for Holstein, Jersey and RDC

Holstein: AU-QGG lead organization

Jersey: AU-QGG lead organization

RDC: Växa lead organization – therefore not part of this presentation

Globale Methane Genetics (GMG)

Main activities - Holstein

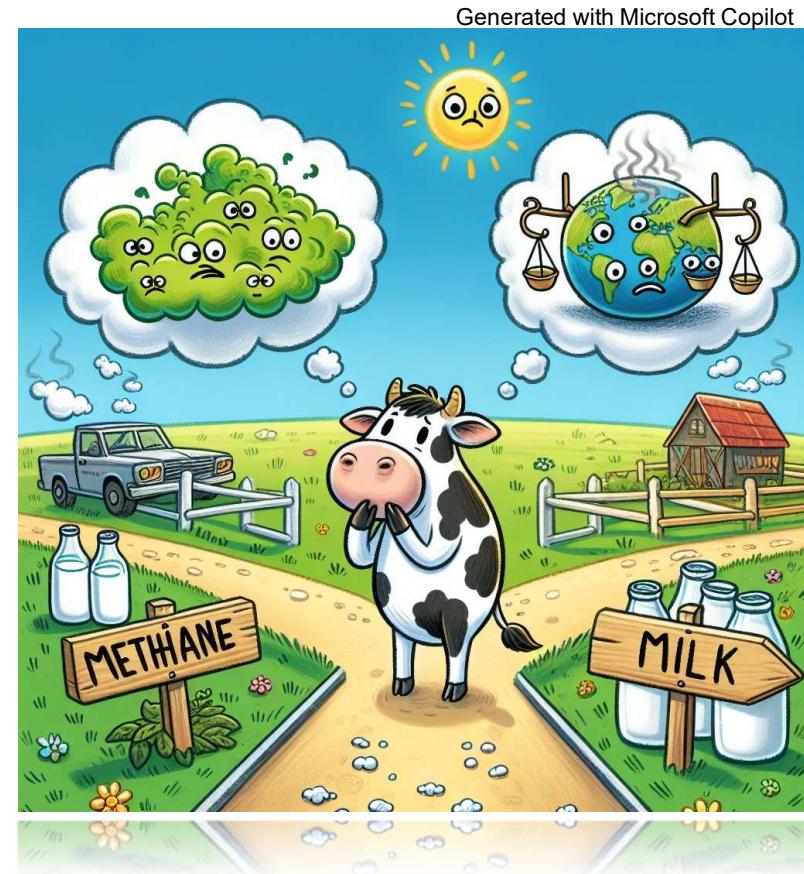
- Establishing a testing facility for different sniffer types (quality assessment)
- International protocols and supporting tools for methane on commercial farms
 - Recommendations in ICAR (International Committee for Animal Recording) guidelines
- Developing methods and software for automated data processing
 - Standardized protocols for handling methane data across countries
- Combine methane phenotypes across countries to enhance genetic evaluations

Globale Methane Genetics (GMG)

Main activities - Jersey

- Collection of methane data in Canada & Denmark
- Develop a pipeline for quality control and phenotype definition
- Upload data to GMG database *Jersey Methane Hub*
 Event data, pedigree, genotypes, calving info., etc.
- Collaborate with other **GMG** projects – e.g., microbiome

GreenFeed data


- Alternative measuring method, measures methane production in g/day
 - Sniffer: measures gas (e.g. methane) concentrations in ppm
 - Can be converted to gram per day, but involves some inference steps
- (Kjeldsen et al., 2024)
- In the Netherlands: both data combined in genetic evaluation
 - Methane production phenotype for all animals
- Currently methane data used for feeding trials
 - Investigating options for data sharing to support genetic analysis

https://www.google.com/url?sa=t&source=web&ct=j&url=http%3A%2Fwww.c-lockinc.com%2Fresearchers%2Fproducts&ved=0CBYQjRxqFwoTCODaptQA_5EDFQAAAAAdA AAAABAI&opi=89978449

Other hot topics

- Methane index for crossbred slaughter calves
Enabled by results of the Future Beef Cross project, feed efficiency will follow in februar evaluation
- Bovaer
How to handle methane data from cows fed Bovaer in genetic evaluations?
- Combination of methane, feed efficiency and e.g. yield data
Trait development to anticipate unfavorable trait connections

Conclusion

- Many projects ongoing
- International collaboration important to avoid duplication of work, maximize benefits by sharing data and improve efficiency and accelerate progress
- Current international and Nordic collaborations are already making a difference

→ NAV methane working group is a strong foundation for future success

Questions?