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Abstract  
Genomic prediction is of great interest in small breeds. When breed-wise populations cannot 
exchange data, the establishment of a multi-breed evaluation is a tempting option. Single-step 
genomic prediction is a useful tool when limited data is available. In the current study, we 
developed a single-step genomic prediction for the small indigenous Finncattle breed with or 
without data from national major breed Nordic Red Dairy cattle (RDC). The reliability of 
genomic prediction was assessed using modified Interbull and Legarra & Reverter validation 
approaches. Inclusion of the RDC data to Finncattle evaluations helped to improve the quality 
of prediction in traditional and genomic models. The highest prediction reliability for milk and 
protein was obtained using the multi-breed single-step model.  
 
Introduction 

Genomic prediction has been widely used as a two-step procedure in large dairy cattle 
populations since 2009. The use of DNA markers allows predicting the breeding value of a 
candidate animal with high reliability at an early age (VanRaden, 2020). However, in small 
breeds, the use of the two-step genomic prediction approach might be challenging due to the 
limited data available. Thus, the single-step method (Christensen & Lund, 2010) would be the 
best way to perform genomic prediction with a limited number of genotyped animals and 
phenotypic records (Song et al., 2019). A widely reported procedure to increase the power of 
genomic prediction is the exchange of genomic, phenotypic, or MACE (Multi-trait Across-
Country Evaluations, Interbull, Sweden) information between countries (Kudinov et al., 
2021a). Naturally, the exchange can only be done with the common breeds and cannot be used 
when the breed is unique. In such a situation multi-breed evaluation might be the solution. 
Usually when multi-breed evaluations are used, the solutions for SNP effects are typically 
estimated by breed as the two-step procedure. The applicability of the multi-breed single-step 
genomic prediction model has not been studied extensively. 

Finncattle (FIC) is the local Finnish breed.  Breeding values for FIC have been evaluated by 
Nordic Cattle Genetic Evaluation (NAV) in the same evaluation with Nordic Red Dairy Cattle 
(RDC) and Finnish Holstein (Fin HOL, Kudinov et al., 2021b). Multi-breed data is used because 
many of the herds raise cows from the three breeds in the same facilities and feeding. The 
current genomic evaluation for RDC animals uses the two-step approach with pure RDC 
animals. Because genotyping of FIC breed has started only recently, the development of FIC 
genomic prediction models has become topical. Assuming the benefits and willingness of 
Nordic countries to run genomic prediction using a single-step model, the development of a 
multi-breed single-step model was started. 

The focus of the current study was to assess the accuracy of genomic prediction for FIC cows 
with and without RDC phenotypic and genomic information. We performed validation of the 
model fit by comparing results from approaches suggested by Legarra & Reverter (2018) and 
modified Mäntysaari et al. (2010). 
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Materials & Methods 
Data. Pedigree and phenotypic records were obtained from the August 2020 NAV RDC milk 
and protein evaluations. Pedigree included 4,741,559 RDC, 1,047,697 Fin HOL, 36,133 FIC, 
and 101,144 other breed animals. There were 137 unknown parent groups (UPG) formed using 
breed by country by time classes. Phenotypic data was presented by 305-day milk and protein 
first lactation records from 3,468,530 RDC, 811,363 FIN HOL, and 27,810 FIC cows. Genomic 
data include genotypes from 187 FIC and 35,729 RDC bulls, and 756 FIC and 133,107 RDC 
cows. Raw genotypes were imputed and edited by NAV and included 46,914 SNP markers that 
are used in the current national multi-step genomic evaluations.  
 
Statistical models. Single-step GBLUP and pedigree-based BLUP (PBLUP) were used to 
estimate breeding values. All models used the same pedigree and UPG, but the phenotypic and 
genomic data differed. Genomic prediction was performed using a single-step GTBLUP 
(Mäntysaari et al., 2017; Koivula et al., 2021) model with two different datasets: 
ssGTBLUPFIC+RDC used FIC and RDC data; ssGTBLUPFIC used FIC data only. Corresponding 
PBLUP predictions used either FIC and RDC data – PBLUPFIC+RDC or FIC data only – 
PBLUPFIC. In the single-step models, UPG were substituted by the same number of 
metafounders (MF, Legarra et al., 2015). The relationships between MF in the pedigree were 
modeled using a gamma matrix (𝚪𝚪) of size 137 as presented in Kudinov et al. (2021b). The 
inverses of pedigree relationship matrix (A) and submatrix for genotyped animals (A22) were 
built with MF inbreeding coefficients. Genomic relationship matrix (G) was built assuming a 
base population allele frequency = 0.5 and residual polygenic effect = 30%. Model runs were 
done with MiX99 software (Strandén & Lidauer, 1999). 
The prediction power of the genetic evaluation models was examined using forward prediction 
validation. In the reduced data, records from 2017 - 2020 were omitted. The validation used 73 
genotyped cows that had no record in the reduced milk and protein data but had records in the 
full data. Validation reliability of predictions was assessed by two methods: I) production 
prediction validation (PPV) - regression of yield deviations (YD) of cows computed with full 
genomic and phenotypic data on (genomic) estimated breeding values ([G]EBV) computed 
using truncated data ([G]EBVred; YD – µ[G]EBVred = b0 + b1 ([G]EBVred - µ[G]EBVred), where 
µ[G]EBVred is mean of [G]EBVred). Similar to the Interbull GEBV validation test (Mäntysaari et 
al., 2010), the YD of cow j was weighted by wj computed as wj = ERCj / (ERCj + λ), where λ = 
(1-h2)/h2;h2 is heritability of the trait and ERCj is the effective record contribution (Přibyl et al., 
2013), the coefficient of determination (R2) from the regression equation was adjusted by mean 
of the weights (R𝑤𝑤

2 ); II) Linear-regression validation (LRV, Legarra and Reverter, 2018) of 
[G]EBV computed using the full data on [G]EBVred using formulae [G]EBV – µ[G]EBVred = b0 + 
b1([G]EBVred - µ[G]EBVred).  
 
Results and Discussion 

Table 1 presents validation results for the first lactation milk yield in 73 FIC cows obtained 
using the PPV and LRV approaches. In the PPV approach, the highest validation reliability 
(R𝑤𝑤

2 ) was obtained for the ssGTBLUPFIC+RDC model (0.52), as expected. Elimination of the 
RDC data from the single-step model (ssGTBLUPFIC) led to a 0.12 decrease in  𝑅𝑅𝑤𝑤2  (0.40). In 
both data scenarios, the single-step models showed higher validation reliabilities than their 
corresponding animal models. The increase was 0.12 and 0.07 for RDC+FIC and FIC data, 
respectively. The regression coefficient (b1), indicating the bias, was over 1.0 for the 
ssGTBLUPFIC+RDC model due to underprediction of GEBV differences by the reduced data. In 
the LRV approach, the b1 coefficient behaved like in PPV and the value was over one (1.05) in 
the ssGTBLUPFIC+RDC model.  The highest correlation between the full and the reduced data 



predictions was observed in ssGTBLUPFIC+RDC suggesting a higher predictive ability of the 
model compared to the other methods. For protein (Table 2), in general, the 𝑅𝑅𝑤𝑤2  values were 
higher than in milk. The b1 coefficients were over one in PPV for both genomic models (1.07 
and 1.03). In the LRV approach, b1 was close to one in all models and the highest coefficient 
of correlations (𝑐𝑐𝑐𝑐𝑐𝑐) were in models with genomic data (0.83 and 0.78). The 𝑐𝑐𝑐𝑐𝑐𝑐 values for 
milk and protein were alike. 
 
Table 1. Results from validation test in 73 FIC cows for 305d first lactation milk.  
 
 PPV1  LRV2 

Model 𝑏𝑏0
3 (kg) 𝑏𝑏1

4 𝑅𝑅𝑤𝑤2
5  𝑏𝑏0 (kg) 𝑏𝑏1 𝑐𝑐𝑐𝑐𝑐𝑐6 

ssGTBLUPFIC+RDC -60 1.07 0.52  1.2 1.05 0.84 
ssGTBLUPFIC -34 1.01 0.40  -21 0.99 0.78 
PBLUPFIC+RDC -52 0.99 0.40  2.2 0.99 0.73 
PBLUPFIC -20 0.92 0.33  -13 0.96 0.70 

1 Prediction of full data YD by reduced data [G]EBV using linear model YD – µ[G]EBVred = b0 + b1([G]EBVred - 
µ[G]EBVred) 
2 Prediction of full data [G]EBV by reduced data [G]EBV using linear model [G]EBV – µ[G]EBVred = b0 + 
b1([G]EBVred - µ[G]EBVred) 
3𝑏𝑏0 = the bias 
4𝑏𝑏1 = the regression coefficient 
5𝑅𝑅𝑤𝑤2  = the coefficient of determination from PPV adjusted by the ERC 
6𝑐𝑐𝑐𝑐𝑐𝑐 = coefficient of correlation  

 
The addition of RDC phenotypic data to FIC evaluations improved the prediction reliability 

of the FIC traditional model. Further augmentation of the model by FIC and RDC genotypes 
enhanced prediction even further.  

 
Table 2. Results from validation test in 73 FIC cows for 305d first lactation protein.  
 
 PPV1  LRV2 

Model 𝑏𝑏0
3(kg) 𝑏𝑏1

4 𝑅𝑅𝑤𝑤2
5  𝑏𝑏0 (kg) 𝑏𝑏1 𝑐𝑐𝑐𝑐𝑐𝑐6 

ssGTBLUPFIC+RDC -1.91 1.07 0.61  -0.03 0.99 0.83 
ssGTBLUPFIC -0.11 1.03 0.49  0.14 0.98 0.78 
PBLUPFIC+RDC -2.09 1.00 0.44  -0.23 0.98 0.72 
PBLUPFIC 0.19 0.98 0.42  0.32 0.97 0.71 

1 Prediction of full data YD by reduced data [G]EBV using linear model YD – µ[G]EBVred = b0 + b1([G]EBVred - 
µ[G]EBVred) 
2 Prediction of full data [G]EBV by reduced data [G]EBV using linear model [G]EBV – µ[G]EBVred = b0 + 
b1([G]EBVred - µ[G]EBVred) 
3𝑏𝑏0 = the bias 
4𝑏𝑏1 = the regression coefficient 
5𝑅𝑅𝑤𝑤2  = the coefficient of determination from PPV adjusted by the ERC 
6𝑐𝑐𝑐𝑐𝑐𝑐 = coefficient of correlation  

 



Both PPV and LRV approaches gave similar results for the analyzed data. The unfit of the 
PPV for complex data sets (low heritability, indirect genetic values) discussed in Legarra and 
Reverter (2018) was not applicable for our research. However, the performance of the LRV 
approach is computationally less challenging compared to PPV and could be prioritized. 
Implementation of the ssGTBLUP model for FIC and RDC Test-Day data is the next 
development step. In the analysis of the test day data, the LRV approach allows a 
straightforward way to perform prediction validation. 
 
Conclusions 
A multi-breed single-step model for FIC and RDC was successfully used in genomic prediction 
using 305-day first lactation milk and protein data. The genomic model with FIC and RDC data 
showed higher prediction reliability than using FIC data only.  
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