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Abstract 
The aim of the study was to compare the metafounders approach (MF) to conventional genetic 
unknown parent groups (UPG) and to estimate the effect of blending the external information. 
All results were compared also to results from the official EBV model (AM). The results 
showed that both the traditional UPG and the MF approach can be implemented in ssGTBLUP 
together with the blending of foreign information. However, the MF approach was slightly more 
effective in reducing bias in young bulls.  
 
Introduction  
The use of sires from international populations is common in dairy cattle breeding.  The 
exchange of sire genotypes allows national breeding programs to properly integrate multi-trait 
cross-country assessments (MACE; Schaeffer, 1994) by Interbull (Uppsala, Sweden) into 
domestic evaluations. The integration of bull information by blending MACE yield indices into 
the Nordic test-day (TD) model was introduced by Pitkänen et al. (2020). 

In single-step models, an unsolved model problem is how to build genomic (G) and pedigree 
(A22) relationship matrices which meet the theoretical assumptions of the same scale and equal 
base populations. For example, base population allele frequencies (AF) can be used (VanRaden, 
2008), and elements of G can be scaled and centered to have on average the same diagonal and 
off-diagonal elements as in A22 (Christensen, 2012). The metafounder (MF) approach proposed 
by Legarra et al. (2015) attempts to make the A and A22 matrices compatible with the G matrix. 
In the MF approach, allele frequencies (AF) equal to 0.5 for all markers are assumed in the G 
matrix (Garcia-Baccino et al. 2017) and the A matrix has MF or pseudo-individuals with self-
relationships. The MF are like unknown parent groups (UPG) but allow a related base 
population with nonzero inbreeding coefficients (e.g., Legarra et al. 2015; Garcia-Baccino et 
al. 2017). The relationships within and between the MF are modelled by a Γ matrix, which 
thereafter is used in forming the pedigree-based relationship matrix (AΓ). 

The objectives of this study were to compare the performance of the MF approach to the 
corresponding model with UPG and to address the effect of integration of external information 
into Nordic Holstein test day (TD) model evaluations. The MF was applied, and MACE 
information was included in the single-step (model called GTB_MF), and in the animal model 
(AMB_MF). To compare method differences, we run separately also ssGTBLUP with MACE 
information and the QP transformation where UPGs were included with the QP transformation 
(GTB), and ssGTBLUP without MACE information using either the QP transformation (GT) or 
the metafounders (GT_MF). All the results were compared also to results from the official EBV 
model (AM). 
 
Material & methods  
The official Nordic HOL milk production evaluation data obtained from the Nordic Cattle 
Genetic Evaluation (NAV) were used in all analyses of this study. The official evaluation 
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includes TD records from milk, fat and protein production from the first three lactations as 
multiple traits. The TD data included 8.5 million cows with a total of 173.7 million records and 
10.9 million animals in the pedigree. There were 274 145 genotyped animals. After the same 
edits used in current NAV HOL genomic evaluations, 46 342 SNP markers on the 29 bovine 
autosomes were available for further analysis. 
 
Models. The Nordic multiple traits reduced rank random regression TD model with 
heterogeneous variance (HV) correction (Lidauer et al., 2015) was used. The model specifies 
27 traits: 3 countries (DFS: Denmark, Finland and Sweden), 3 yield traits, 3 lactations. Each 
animal receives 15 solutions for the random regression effects. With the data used, the mixed 
model equations (MME) had 155.8 million animal equations and a total of 444.2 million 
equations. For the validation of bull (G)EBVs, the last four years of observations were removed 
from the full data. 

All models were solved with MiX99 software (Strandén and Lidauer, 1999). The single-step 
model used ssGTBLUP with efficient computations (Mäntysaari et al., 2017).  In all single-step 
models, the genomic relationship matrix was based on VanRaden method 1 with a 30% residual 
polygenic proportion, AF of 0.5 for all the markers, and in UPG models diagonals in G were 
scaled by trace(𝐀𝐀𝟐𝟐𝟐𝟐)/trace(𝐆𝐆). 

Four single-step models were tested: GT, GTB, GT_MF and GTB_MF. In the GT and GTB 
models, 176 genetic groups were included using QP transformation (detailed description in 
Koivula et al., 2021). The GT_MF and GTB_MF models used the MF approach. The MF 
approach needs a covariance matrix, denoted Γ, for the metafounders. The 176 UPGs were used 
as metafounders. The UPGs were based on 4 breed groups (HOL, RDC, JER, other) and 5 
country of origin groups within Holstein (HOLdnk, HOLswe, HOLfin, HOLother, HOLred). 
Within each of these 9 sources, UPG were further grouped by birth year decade and by selection 
path when appropriate. For the Γ matrix of the 9 base metafounders, we defined a covariance 
function (CF) model (Kirkpatrick et al., 1994) described in Kudinov et al. (2021). After solving 
the Γ matrix for the 176 MF, we computed the Γ matrix compliant inbreeding coefficients 
needed for the inverses AΓ and A22

Γ in the MME. 
Foreign information was included in the GTB and GTB_MF models. The external 

information from MACE was included as described by Pitkänen et al. (2020). A bull was 
considered to have additional information in MACE when its reliability for milk, protein and 
fat indices in MACE were at least 0.01 units higher compared to the Nordic evaluation 
reliability. The integration process had three steps: 1) effective record contributions (ERC) in 
MACE and in the national evaluations were calculated for the selected bulls; 2) yield indices 
and ERC were used to calculate multi-trait deregressed proofs (DRPs) separately using the 
Nordic and the MACE data. Finally, 3) based on the two DRPs and the two ERCs, pseudo-
observations were calculated for the selected 31 779 bulls and were included in the TD data. In 
addition, the official animal model (AM) and animal model AMB_MF using blending with MF 
were performed.  
 
Results and Discussion  
Table 1 illustrates the linear regression validation results (LR, Legarra & Reverter, 2018) from 
the different models for 524 DFS Holstein validation bulls. The level differences in the (G)EBV 
predictions were corrected by standardizing the mean of cows born 2007 to be the same in all 
models. The b0 column has the mean difference (kg) between the full and reduced run (G)EBVs. 
This illustrates the realized bias between the full and reduced evaluation. The results indicate 
that the use of the MF approach led to a somewhat lower bias and higher coefficient of 
correlation (R2) in the single-step evaluations. The regression coefficient (b1) was on average 



2% units higher for the MF models than for the QP models suggesting somewhat less 
overdispersion of GEBVs. These results support the earlier findings that the MF approach may 
improve the single-step evaluations. The inclusion of external information also improved the 
evaluations and together with the MF approach gave the best validation results. The blending 
of foreign information had, in general, a positive effect on the R2 values but, on the other hand, 
does not improve the bias problem.  
 
Table 1. Bull LR validation (Bulls=524) results. Regression coefficients (b1) and coefficient 
of correlation (R2) from different models. The b0= mean(Full_(G)EBV –  
reduced_(G)EBV). The single-step models: unknown parent groups (UPG) using the QP 
transformation (GT) or the metafounder (MF) approach (GT_MF), UPG using the QP 
transformation and the blending of foreign information (GTB), and the MF approach with 
the blending of foreign information (GTB_MF). The animal models: the official model 
(AM), and the MF approach with the blending of foreign information (AMB_MF). 
 
 Model b0 b1 R2 

M
ilk

 

AM -101.7 0.84 0.32 
AMB_MF  -109.86 0.89 0.35 
GT -319.84 0.87 0.67 
GT_MF -272.31 0.89 0.68 
GTB -306.32 0.86 0.69 
GTB_MF -267.07 0.88 0.71 

Pr
ot

ei
n 

AM 0.80 0.74 0.24 
AMB_MF -0.31 0.83 0.28 
GT -11.10 0.81 0.63 
GT_MF -9.71 0.83 0.64 
GTB -11.04 0.79 0.64 
GTB_MF -9.73 0.82 0.67 

Fa
t 

AM -2.18 0.73 0.23 
AMB_MF -2.55 0.80 0.26 
GT -16.16 0.82 0.64 
GT_MF -14.67 0.85 0.65 
GTB -14.76 0.81 0.66 
GTB_MF -13.38 0.84 0.68 

 
The genetic trend of protein for the genotyped Nordic Holstein bulls is presented in Figure 

1. The figure shows that with the full data the genetic trends were similar with different single-
step models, and the correlations between GEBVs varied from 0.985 to 1.00. The differences 
between the models can be observed in the reduced data runs. The most obvious difference is 
seen between the models using the QP transformation and the MF approach. The MF approach 
model does not increase the genetic trend of young bulls as much as the QP model. Also, the 
blending of foreign information increases the genetic trend of young bulls, but the increase is 
not as high when the MF approach is used. The animal model EBVs showed a much lower 
genetic trend compared to the single-step models, but with the MF approach and the inclusion 
of MACE information, the b1 and R2 also improved in the animal model. 

In conclusion, it seems that both the traditional genetic groups and the MF approach can be 
implemented in ssGTBLUP together with the blending of foreign information. However, it 
seems that the MF approach can be slightly more efficient in reducing bias in young bulls. 



 
Figure 1. Genetic trends by birth year for protein from different models. The single-step 
models: unknown parent groups (UPG) using the QP transformation (GT) or the 
metafounder (MF) approach (GT_MF), UPG using the QP transformation and the 
blending of foreign information (GTB) and the MF approach with the blending of 
foreign information (GTB_MF). The animal models: the official model (AM), and the 
MF approach with the blending of foreign information (AMB_MF). The *RED indicates 
the reduced data run.  
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