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Abstract 
 

Selecting dairy cattle that are efficient in utilizing feed is topical for many reasons discussed 

widely. Residual feed intake (RFI) is a trait that can capture the metabolic efficiency of a 

dairy cow in a broad sense including the abilities to digest feed, to have low energy loss 

through methane exhalation, and to use metabolizable energy for production. In 2020 the 

countries Denmark, Finland and Sweden have included the traits metabolic body weight and 

RFI into the Nordic Total Merit indices for Holstein, Nordic Red and Jersey dairy cattle. 

When adding more data from commercial farms to the genomic prediction for RFI, it was 

recognized that partial regression coefficient estimates may vary significantly across 

environments and parities. In this study we applied different approaches to predict breeding 

values for metabolic efficiency in Jersey dairy cows to assess the implications of using RFI 

breeding values for selection. The approaches were: A) similar to the current Nordic RFI 

evaluation where firstly dry matter intake (DMI) is regressed on energy sinks to get RFI 

observations that are subsequently used for predicting breeding values. B) was otherwise 

same as A) but instead of regressing DMI on energy sinks, DMI was regressed on expected 

DMI, where expected DMI values were calculated by utilizing energy requirement estimates 

from dairy nutrition studies. C) also otherwise same as A) but RFI observations were the 

difference between DMI and expected DMI. D) a random regression breeding value 

prediction model where DMI was regressed on expected DMI (ReFI). Estimated heritability 

was 0.14, 0.16, 0.10 and 0.10, and estimated additive genetic standard deviation was 0.89 kg, 

1.02 kg, 0.95 kg and 5.4 % when applying approach A, B, C and D, respectively. Metabolic 

efficiency was unfavourable correlated with yield traits when applying A or B. In contrast, 

metabolic efficiency was favourable correlated with yield traits when applying C or D. We 

found that with approach A and B it was not possible to model the expected feed intake 

properly, which caused the discrepancy between the breeding values. Consequently, when 

selecting the genetically 10% best cows based on approach A, then these cows had only a 4% 

higher feed conversion efficiency compared to average cows, but when selection was based 

on approach D, then the cows had highest yield and 12 % higher feed conversion efficiency 

compared to average cows. Results indicate that using RFI as a trait to improve metabolic 

efficiency in dairy cows should be reconsidered if the modelling of partial regression 

coefficients for the energy sinks is not satisfying. 
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Introduction 

 

Improving resources efficiency of dairy cows not only by selecting for the traits commonly 

included in total merit indices but preferable by also including efficiency traits into total merit 

indices has been studied intensively. Pryce et al. (2015) proposed to include a subindex that 

accounts for feed saved due to lower feed requirement for maintenance and higher metabolic 

efficiency of the cow. In this regard, the metabolic efficiency of a cow is understood in a 

broad sense that includes the abilities to digest feed, to have low energy loss through methane 

exhalation and to use metabolizable energy for the different energy pathways, and all that can 

be modelled by residual feed intake (RFI) (Koch et al., 1963). For breeding value estimation 

purposes, it is common that RFI observations are modelled from the same data that is used for 

estimating the breeding values. Therefore, dry matter intake (DMI) is modelled by partial 

regression analyses and obtained deviations from the expectations, i.e., the residuals, are used 

subsequently as observations for estimating RFI breeding values (Berry & Crowley, 2013). 

Alternatively, RFI can be described by a linear function of feed intake and energy sink traits 

breeding values from a multivariate analysis (Kennedy et al., 1993), which also can be 

tailored to complex multiple-trait random regression models (Islam et al., 2020). 

 

In 2020 Nordic Cattle Genetic Evaluation (NAV) has included a Saved feed index into the 

Nordic Total Merit for selecting Holstein, Nordic Red and Jersey dairy cattle in Denmark, 

Finland and Sweden (Stephansen et al., 2021). The Saved feed index considers the animal’s 

genomic breeding value for metabolic body weight (MBW) to account for the feed needed for 

maintenance, and the animal’s genomic breeding value for RFI to accounts for the metabolic 

efficiency of the cow. Research on improving genomic predictions for both traits has been 

continued with the aim to increase the reliabilities of the genomic breeding values. For the 

MBW evaluation carcass weight will be included as correlated trait and for RFI more data 

from commercial herds with the CFIT 3D camera system (Lassen et al., 2018) are used. In 

this attempt, we have recognized that partial regression coefficient estimates from the first 

step of the RFI evaluation may vary significantly across environments and parities. 

Furthermore, partial regression coefficients also differed from regression coefficients 

developed in nutrition studies (Agnew et al., 2003). This was observed both on research farm 

data and CFIT data. In an earlier study (Mehtiö et al., 2018) it was also found that the partial 

regression coefficients, when estimated from the data, may deviate significantly from those 

obtained in nutrition studies. Moreover, we noticed that the varying of partial regression 

coefficient estimates has a noteworthy effect on RFI breeding values. Therefore, a better 

understanding of the implications of using RFI breeding values for genetic improvement of 

dairy cattle is needed. 

 

An alternative approach (Lidauer et al., 2022) that allows modelling regression coefficients to 

be close to their biological expectations, is regression on feed intake (ReFI), where DMI is 

regressed on expected DMI (eDMI). For this approach, eDMI is calculated by using energy 

requirement (ER) coefficients that are estimated in nutrition studies (e.g., Agnew et al., 2003) 

rather than estimating partial regression coefficients simultaneously while estimating breeding 

values for RFI. The aim of this study was to contrast estimated breeding values (EBV) 

obtained from a RFI model like that applied by NAV with those obtained from the ReFI 

model. To dissect differences between the two approaches, we modelled metabolic efficiency 

by two additional approaches and estimated the genetic correlations between these metabolic 

efficiency traits and the production traits milk yield (MY), fat yield (FY), and protein yield 



(PY). We also contrasted phenotypes of selected superior cows, when selection is based on 

the four alternative EBV. 

 

Material and methods 

 

Data 

 

For this study Jersey feed efficiency data were extracted from the NAV genetic evaluation. 

The data were collected on four herds between January 2019 and December 2021 and 

included 46,822 records up to the sixth parity of 1,211 Jersey cows (Table 1). Weekly 

averages of daily DMI and body weight (BW) predictions were attained by the CFIT 3D 

camera system (Lassen et al., 2018). The BW predictions were used to calculate daily MBW 

and daily BW change (BW). The milk yield data were from the official milk recording 

scheme and were used to form for each intake record an energy corrected milk (ECM), MY, 

FY and PY observation. All data was cleaned from outliers. 

 

Table 1. Descriptive statistics for dry matter intake (DMI), metabolic body weight (MBW), 

energy corrected milk (ECM), milk yield (MY), fat yield (FY) and protein yield (PY) given for 

1,211 Jersey cows by first (1) and later (2+) parities. 

 

Parity N  DMI MBW ECM MY FY PY 

         

1 18,221 Mean 21.3 95.0 28.9 22.0 1.3 1.0 

  Std 3.2 5.5 5.6 4.9 0.3 0.2 

         

2+ 28,588 Mean 24.5 103.3 37.1 28.5 1.7 1.2 

  Std 3.3 5.1 6.1 5.6 0.3 0.2 

 

 

Approaches for estimating metabolic efficiency breeding values 

 

The RFI approach and ReFI approach are conceptually rather different. Despite that the ReFI 

approach utilizes coefficients from ER studies, also the applied model is rather different. To 

better understand the source of differences in EBV from both approaches, we also included 

two intermediate approaches. 

 

Approach A: Currently used residual feed intake model (RFI_A). 

 

The approach involved two steps. In a first step DMI was regressed on energy sinks to get 

RFI observations: 

 

DMI = c1 × A + c2 × A2 + LP + LYS + HYS + 1 × ECM + 2 × MBW + 3 × BW + rfi     (1) 

 

where c1 and c2 are regression coefficients to model the calving age (A) effect of the cow; LP 

is lactation month nested within first and later parities; LYS is lactation period nested within 

year and season; HYS is the herd × year × season contemporary effect; 1, 2 and 3 are the 

coefficients for the partial regressions on the energy sinks ECM, MBW and BW, 

respectively that are nested within LP classes; and rfi is the model residual and was regarded 



as a raw RFI observations. The raw rfi observations were adjusted for heterogeneous variance 

to accommodate a single trait evaluation in the second step (Stephansen et al., 2021). The 

final RFI observations used in the second step were formed by adding to the adjusted rfi 

observations the LYS and HYS solutions from model (1) to avoid that genetic variation would 

be lost in step 1. For the second step the applied breeding value estimation model was: 

 

RFI = LYS + HYS + pe + a + e             (2) 

 

where LYS and HYS are same fixed effects as described for model (1); pe is the cow’s 

random permanent environmental effect; a is the random additive genetic animal effect; and e 

is the random residual. 

 

Approach B: Residual feed intake with regression on feed requirement (RFI_B). 

 

The approach was otherwise identically with approach A, but the model for the first step was 

modified: 

 

DMI = c1 × A + c2 × A2 + LP + LYS + HYS + φ × eDMI + rfi,           (3) 

 

where all effects in the model are the same as in model (1) but the model included instead of 

partial regressions on energy sinks a regression on eDMI, where φ is a regression coefficient 

nested within LP classes. Calculating for each record the eDMI value was done by firstly 

calculating ER: 

 

ER = 4.81 × ECM + 0.603 × MBW – 27.6 × BW_Loss + 38.3 × BW_Gain      (5) 

 

where the coefficients are metabolizable ER in mega joules for producing 1 kg ECM, 

maintaining 1 kg0.75 MBW, utilizing energy from 1 kg BW loss, and gaining 1 kg BW. The 

applied coefficients were the averages of the estimates reported by Agnew et al. (2003). Then, 

ER values were scaled so, that the obtained eDMI covariables should yield φ regression 

coefficient estimates that have on average an expectation of unity: 

 

eDMI = ER × mean(DMI) / mean(ER).             (6) 

 

Approach C: Requirement residual feed intake (RFI_C). 

 

Again, the approach was otherwise identically with approach A, but a raw RFI observation 

was calculated as a difference: 

 

rfi = DMI – eDMI                   (7) 

 

Approach D: Regression on expected feed intake (ReFI). 

 

This approach only requires modelling of DMI by a random regression model that regresses 

DMI on eDMI: 

 

DMI = β × eDMI +  × eDMI +  × eDMI + α × eDMI +         (8) 

 



where β is a fixed regression coefficient nested within herd × year × parity classes,  is a 

random regression coefficient nested within herd × year × month classes,  is a random 

regression coefficient nested within permanent environmental classes, α is a random 

regression coefficient nested within additive genetic animal classes, and  is the random 

residual. 

 

Estimation of variance components and breeding values 

 

The relationships between animals were modelled by setting up the numerator relationship 

matrix (A). Therefore, the pedigree of all cows with observations was pruned including five 

generations at most, which resulted 4,223 informative animals in the pedigree. Univariate 

analyses were carried out to estimate variance components for the four metabolic efficiency 

approaches by applying model (2) for the RFI approaches (A, B and C) and model (8) for the 

ReFI approach (D). The genetic correlations between the four metabolic efficiency traits and 

the production traits MY, FY and PY were estimated by multivariate analyses using as 

observations yield deviations (YD) and applying a multiple-trait repeatability animal model 

that included a mean and the random permanent environmental, random animal and random 

residual effects. The YD observations were obtained by firstly carrying out a multivariate 

analysis for the yield traits and univariate analyses for metabolic efficiency by the approaches 

A, B, C and D, and followed by summing solutions for the permanent environmental, additive 

genetic, and residual effects. For the genetic correlation study only first parity data was used. 

 

All data were used for the prediction of EBV based on model (2) for the RFI approaches (A, 

B and C) and model (8) for the ReFI approach (D). Cows with at least 5 observations in the 

first parity were ranked alternatively based on the four different sets of EBV, and the first 

parity phenotypic means of the genetically 10 % best cows were contrasted against the 

phenotypic means of all cows. 

 

Results and Discussion 

 

Variance component estimates 

 

The estimated heritability was 0.14, 0.16, 0.10 and 0.10, and the estimated additive genetic 

standard deviation was 0.89 kg, 1.02 kg, 0.95 kg and 5.4 % for RFI approach A, B, C and 

ReFI approach, respectively. Considering that the average DMI was 23.2 kg, the genetic 

standard deviations estimated by approach A, B and C can be expressed in efficiency 

percentages to make it comparable to ReFI. Thus, the genetic standard deviations for RFI by 

approach A, B, and C relate to 3.8 %, 4.1 % and 5.2 %, respectively, which all are lower than 

that one estimated by ReFI. Even estimated genetic variance was higher for RFI_C and ReFI, 

the heritability was lower. This was because RFI_C and ReFI resulted higher residual 

variance estimates compared to those from RFI_A and RFI_B. 

 

The genetic correlation between metabolic efficiency by the four approaches and yield traits 

are given in Table 2. For RFI_A and RFI_B we obtained moderate positive (unfavourable) 

correlations with the yield traits. This was unexpected, because RFI observations are 

corrected for yield. In contrast, for RFI_C and ReFI we obtained moderate negative 

correlations with FY and PY, which indicates a favourable genetic association between 

metabolic efficiency and milk content traits, in particular with fat %. 



 

Table 2.  Genetic correlations between metabolic efficiency by approach A (RFI_A), B 

(RFI_B), C (RFI_C) and D (ReFI), and the yield traits milk (MY), fat yield (FY) and protein 

yield (PY). 

 

Yield trait RFI_A RFI_B RFI_C ReFI 

MY 0.47 0.43 -0.01 0.02 

FY 0.17 0.24 -0.20 -0.28 

PY 0.31 0.30 -0.16 -0.10 

 

 

Regression coefficients for modelling feed intake expectations 

 

The differences in the estimated genetic correlations between the yield traits and metabolic 

efficiency by the four approaches are a result on how the expected DMI is modelled. For 

RFI_A the expectations were obtained by the estimated partial regression coefficients for the 

three energy sink traits ECM, MBW and BW (Table 3). For RFI_B only one single 

regression coefficient (φ) was fit for each class, instead of fitting a partial regression 

coefficient triplet. For approach RFI_C no regression coefficients were estimated, and for the 

ReFI approach regression coefficients (β) were estimated within a different set of classes 

because regression coefficients also modelled the contemporary group effect. 

 

Table 3. Means of regression coefficient estimates across lactation month classes (RFI_A, 

RFI_B) and across herd × year classes (ReFI) by first (1) and later (2+) parities. Energy sink 

traits: energy corrected milk (ECM), metabolic body weight (MBW), body weight change 

(BW), and expected dry matter intake (eDMI). 

 

  RFI_A   RFI_B  ReFI 

 ECM MBW BW  eDMI  eDMI 

Parity 1 2 3  φ  β 

1 0.307 0.159 -0.277  0.463  1.036 

2+ 0.179 0.196 -0.244  0.322  1.013 

 

 

The mean estimates given in Table 3 indicate that there is a discrepancy between the 

estimated partial regression coefficients and the coefficients reported in ER studies (e.g., 

Agnew et al., 2003). Considering that ER regression coefficients applied in equation (5) are 

sufficiently close to the ER of the cows in this study, and that the average energy density of 

the feed was 9.80 megajoule / kg DMI, then it can be expected that on average a cow would 

have required 0.49 kg, 0.062 kg, and 3.91 kg DMI to produce 1 kg ECM, maintain 1 kg0.75 

MBW and increase BW by 1 kg, respectively. However, the partial regression coefficient 

estimates for ECM were on average 37% and 63% lower in first and later parity, respectively. 

The partial regression coefficients for MBW were 2.6 and 3.2 times larger in first and later 

parity, respectively, and the partial regression coefficients for BW where on average even 

negative. Consequently, for high yielding cows the modelled feed intake expectations were 

far too low and such cows received a positive RFI observation, which explains the 

unfavourable correlation between RFI_A and yield traits. The estimated regression 

coefficients for RFI_B where significantly lower than the expected value of 1.0. Therefore, 



similarly to RFI_A, for high producing cows the modelled feed intake expectations were too 

low, which resulted also in unfavourable correlations with the yield traits. For the ReFI 

approach the estimated regression coefficients were on average close to the expected value of 

1.0 (Table 3), which supports that the estimated favourable correlations with yield traits might 

be closer to the true genetic association between metabolic efficiency and yield. The finding 

for the ReFI approach were supported by the RFI_C approach, which did not require to 

estimate regression coefficients from the data. 

 

Phenotypes of genetically superior cows based on four alternative breeding values 

 

The four different sets of EBV for metabolic efficiency differed considerably. We obtained a 

correlation between EBV from the approach A with EBV from approaches B, C and D of 

0.92, 0.69 and 0.61, respectively. Consequently, groups of genetically superior cows were 

rather different when selecting based on the different sets of EBV. In Table 4 the first parity 

phenotypic means of the four different cow groups are tabulated against the first parity 

phenotypic means of all cows with at least five first parity observations. 

 

Table 4. Phenotypic means of first parity dry matter intake (DMI), metabolic body weight 

(MBW), energy corrected milk (ECM), milk yield (MY), fat yield (FY), protein yield (PY) and 

feed conversion efficiency (FCE=ECM/DMI) for all cows with at least 5 observations and for 

10% best cows with at least 5 observations selected based on EBV estimated by four 

Approaches. Approach A (RFI_A), B (RFI_B), C (RFI_C) and D (ReFI). 

 

  DMI MBW ECM MY FY PY FCE 

All cows  21.2 94.9 28.7 21.8 1.30 0.946 1.35 

10% best 

cow 

Method 
      

 

 RFI_A 18.6 94.7 26.3 18.8 1.22 0.860 1.41 

 RFI_B 18.4 92.8 25.3 18.3 1.17 0.833 1.38 

 RFI3_C 19.9 93.1 29.1 21.5 1.34 0.966 1.46 

 ReFI 19.8 93.9 29.8 22.0 1.37 0.982 1.51 

 

When the 10 % best cows were selected based on RFI_A and RFI_B then these cows had 

lowest DMI but also lower yields compared to average cows. In contrast, when the 10 % best 

cows were selected based on ReFI, then these cows had lower DMI as average cows but 

highest yields. Consequently, when selecting based on RFI_A, then the feed conversion 

efficiency of the 10 % best cows was only 4 % higher than that one of average cows, but the 

feed conversion efficiency was 12 % higher when selection was based on ReFI. 

 

Conclusion 
 

In this study we compared different approaches to predict breeding values for metabolic 

efficiency in dairy cows. With the currently used approach, which models metabolic 

efficiency by a residual feed intake model, genetically superior cows were only moderately 

better in feed efficiency but had lower production. In contrast, when applying an alternative 

approach, where dry matter intake is regressed on expected dry matter intake, then superior 

cows were clearly more efficient and had also significantly higher production. The poor 



performance of the residual feed intake model in this study was due to the inability of the 

model to estimate the partial regression coefficients for the energy sinks properly. 
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