

Meta-model for genomic relationships of metafounders applied on large scale single-step random regression test-day model

M. Koivula¹, I. Strandén¹, G. P. Aamand², E. A. Mäntysaari¹

Natural Resources Institute Finland (Luke), FI-31600 Jokioinen, Finland
 NAV Nordic Cattle Genetic Evaluation, 8200 Aarhus N, Denmark

Allele frequencies (AF)

- Original single step approach used average population allele frequency (AF)
 - In this approach the smallest genomic inbreeding was in a point with a largest mass of genotypes
- Advised approach was to estimate "a base population AF"
 - This was done by essentially estimating the AF from genotyped animals that had bissing parents or parents that have genotyped ancestors (details Gengler et al. 2007).
 - If many genotyped females at the end of the time span:

--> The AF became the AF of the youngest females

- AF can be also estimated from different base populations (groups of animals with unknown parents)
 - Define groups into pedigree (for example breed or breed-origin and the birth decade)
 - Estimate AF in groups using e.g., Bpop (*Bpop, Strandén and Mäntysaari, 2020, AFSci Finland*)
 - We have considered group of animals born 1980s as a base population
- One option is to assume all AF= 0.5.

This approach assumes the base population is many, many generations earlier

Genetic groups

- Genetic groups have significant effect on genetic trends, and, in the single-step genomic BLUP model, on convergence of iterative solving
- Genetic groups can be included into the evaluation model as birth year effects, or unknown parent contributions as regression coefficients
- Computationally more efficient approach is to re-express the parental genetic groups as unknown parent groups (UPG) resulting from QP transformation
- Originally in single step models, A_*^{-1} included the UPG, i.e., animals descended from different base populations.
 - This was not done for A_{22}^{-1} which, thus, assumed only one base population
 - Lead to convergence problems

Genetic groups

• The solution was the full QP transformation model where QP transformation is done to full **H**⁻¹ matrix by inclusion of products

 $\mathbf{Q}'(\mathbf{G}_w^{-1} - \mathbf{A}_{22}^{-1})\mathbf{Q}$ and $-(\mathbf{G}_w^{-1} - \mathbf{A}_{22}^{-1})\mathbf{Q}$ into group equations in \mathbf{A}_*^{-1}

 Alternative option for accounting different base populations is by combining pedigree and genomic information using metafounders (MF)

Aim: to compare single step models using either QP transformation with different allele frequencies or MF approach

Data

- Official Holstein Nordic TD evaluation data for milk, protein and fat
- Genomic data:
 - 274 145 genotyped animals

FULL TD data

- 8.5 million animals with records, 10.9 million animals in the pedigree

REDUCED TD data for validation (four years of data reduction)

- 7.5 million animals with records

Metafounder approach

Single-step GBLUP assumes that the genomic and pedigree relationships are relative to a same base population

Alternatively, we could define the base population of A_{22} to a same base as in **G** and natural base population could be where the animals are unrelated and not inbred (AF=0.5)

MF steps:

- 1. Assume a base for **G** matrix to be in where the AF = 0.5
- 2. Define the base populations for A_*^{-1} (and A_{22}) to be relative to the current genotyped animals (i.e., where the AF=0.5)
 - Estimate the allele frequencies in unknown parent genetic groups
 - Estimate **F** i.e., "genomic compliant relationships" among base population animals
 - Estimate inbreeding for all the animals using the $\pmb{\Gamma}$
- 3. Form (**AΓ**)⁻¹ (and **AΓ**₂₂)

Metafounder tested approach

- Normally in dairy cattle there are > 100 genetic groups
 - in original NAV Holstein evaluation 446
- Define less genetic groups (from 446 to 176)
 Base breeds were assumed to be:
 - HOL divided into DNK, SWE, FIN, Other and RED
 - RDC, JER and "other" + a common trend by time
 - ➡ the rank of the covariance function 9
- Assume metafounder **Γ**-matrix has a structure
 - Structure can be defined with covariance function kernel K (Kirkpatrik et al., 1994)
 - $\Gamma_9 = \Phi_9 K \Phi'_9$
 - $K = (\Phi'_9 \Phi_9)^{-1} * \Phi'_9 \Gamma_9 \Phi_9 * (\Phi'_9 \Phi_9)^{-1}$ (Tijani et al. 1999)
 - Covariance function covariables extend this structure to all groups $\mathbf{F}_{176} = \Phi_{176} \mathbf{K} \Phi'_{176}$

Single-step models compared

ssGTBLUP

- ssGTBLUP with AF from 1980 's considered as base population (Bpop, Strandon and Mäntysaari, 2020)
- 176 genetic groups and full QP transformation, RPG 30 %
- Pedigree inbreeding accounted in A⁻¹ and A₂₂
- Matrix G was scaled so that trace(G)==trace(A₂₂)

ssGTBLUP_AF05

- ssGTBLUP with AF 0.5
- 176 genetic groups and full QP transformation, RPG 30%
- Pedigree inbreeding accounted in A⁻¹ and A₂₂
- Matrix G was scaled so trace(G)==trace(A₂₂)

ssGTBLUP_MF

- Metafounder model, G with AF=0.5
- RPG 30 %
- MF based inbreeding accounted in A^{-1} and A_{22}
- 176 meta-founders, **Г** -matrix with CF

Legarra-Reverter regression

		b _o	b ₁	R ²
Milk	PA	-101.7	0.84	0.32
	GEBV_AF80	-311.8	0.87	0.67
	GEBV_AF05	-319.8	0.87	0.67
	GEBV_MF	-272.3	0.89	0.68
Protein	PA	0.80	0.74	0.24
	GEBV_AF80	-10.81	0.82	0.63
	GEBV_AF05	-11.10	0.81	0.63
	GEBV_MF	-9.71	0.83	0.64
Fat	PA	-2.18	0.73	0.23
	GEBV_AF80	-15.81	0.82	0.64
	GEBV_AF05	-16.16	0.82	0.64
	GEBV_MF	-14.67	0.85	0.65

b_=mean(Full_(G)EBV - reduced_(G)EBV)GEBV_AF80 - ssGTBLUP with QP and RPG 0.30 and AF 1980GEBV_AF05 - ssGTBLUP with QP and RPG 0.30 and AF 0.5GEBV_MF - ssGTBLUP with RPG 0.30 and MetaFounders

Regression of (G)EBV on PA or GEBV_red

Mendelian sampling term bulls (protein)

AF80 - ssGTBLUP with QP and RPG 30 and AF 1980 AF05 - ssGTBLUP with QP and RPG 30 and AF 0.5 MF - ssGTBLUP with MetaFounders and RPG 30

Protein trend Nordic Holstein bulls Full vs Reduced runs

GEBV_AF80 - ssGTBLUP with QP and RPG 30 and AF 1980 GEBV_AF05 - ssGTBLUP with QP and RPG 30 and AF 0.5 GEBV_MF - ssGTBLUP with MetaFounders and RPG 30

Conclusions

salupa_residure6es MS (111° = ∧ ab 3

- <u>ssGTBLUP with AF 0.5 is e</u>asy to use
 no need to calculate AF with a different program
- ssGTBLUP with base population AF
 - need to calculate AF with e.g., Bpop program and decide what base AF to use (we used AF from 1980s)
 - Theoretically more correct as base population AF

These two above appear to have about the same inflation (b_1) and prediction reliability (R^2)

- <u>ssGTBLUP with MF is theoretically more sophisticated way to combine pedigree and genomic information also A⁻¹ is modified according to genomic information
 </u>
 - Does not increase the trend of young animals as much other single step methods tested
 - Marginally better validation results for inflation (b₁) and prediction reliability (R²) than other approaches.

Thank you

